Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AJNR Am J Neuroradiol ; 44(12): 1432-1439, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38050002

RESUMO

BACKGROUND AND PURPOSE: The current imaging assessment of fetal brain gyrification is performed qualitatively and subjectively using sonography and MR imaging. A few previous studies have suggested methods for quantification of fetal gyrification based on 3D reconstructed MR imaging, which requires unique data and is time-consuming. In this study, we aimed to develop an automatic pipeline for gyrification assessment based on routinely acquired fetal 2D MR imaging data, to quantify normal changes with gestation, and to measure differences in fetuses with lissencephaly and polymicrogyria compared with controls. MATERIALS AND METHODS: We included coronal T2-weighted MR imaging data of 162 fetuses retrospectively collected from 2 clinical sites: 134 controls, 12 with lissencephaly, 13 with polymicrogyria, and 3 with suspected lissencephaly based on sonography, yet with normal MR imaging diagnoses. Following brain segmentation, 5 gyrification parameters were calculated separately for each hemisphere on the basis of the area and ratio between the contours of the cerebrum and its convex hull. Seven machine learning classifiers were evaluated to differentiate control fetuses and fetuses with lissencephaly or polymicrogyria. RESULTS: In control fetuses, all parameters changed significantly with gestational age (P < .05). Compared with controls, fetuses with lissencephaly showed significant reductions in all gyrification parameters (P ≤ .02). Similarly, significant reductions were detected for fetuses with polymicrogyria in several parameters (P ≤ .001). The 3 suspected fetuses showed normal gyrification values, supporting the MR imaging diagnosis. An XGBoost-linear algorithm achieved the best results for classification between fetuses with lissencephaly and control fetuses (n = 32), with an area under the curve of 0.90 and a recall of 0.83. Similarly, a random forest classifier showed the best performance for classification of fetuses with polymicrogyria and control fetuses (n = 33), with an area under the curve of 0.84 and a recall of 0.62. CONCLUSIONS: This study presents a pipeline for automatic quantification of fetal brain gyrification and provides normal developmental curves from a large cohort. Our method significantly differentiated fetuses with lissencephaly and polymicrogyria, demonstrating lower gyrification values. The method can aid radiologic assessment, highlight fetuses at risk, and may improve early identification of fetuses with cortical malformations.


Assuntos
Lisencefalia , Polimicrogiria , Feminino , Humanos , Polimicrogiria/diagnóstico por imagem , Estudos Retrospectivos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Lisencefalia/diagnóstico por imagem , Feto/diagnóstico por imagem
2.
Med Image Anal ; 88: 102833, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37267773

RESUMO

In-utero fetal MRI is emerging as an important tool in the diagnosis and analysis of the developing human brain. Automatic segmentation of the developing fetal brain is a vital step in the quantitative analysis of prenatal neurodevelopment both in the research and clinical context. However, manual segmentation of cerebral structures is time-consuming and prone to error and inter-observer variability. Therefore, we organized the Fetal Tissue Annotation (FeTA) Challenge in 2021 in order to encourage the development of automatic segmentation algorithms on an international level. The challenge utilized FeTA Dataset, an open dataset of fetal brain MRI reconstructions segmented into seven different tissues (external cerebrospinal fluid, gray matter, white matter, ventricles, cerebellum, brainstem, deep gray matter). 20 international teams participated in this challenge, submitting a total of 21 algorithms for evaluation. In this paper, we provide a detailed analysis of the results from both a technical and clinical perspective. All participants relied on deep learning methods, mainly U-Nets, with some variability present in the network architecture, optimization, and image pre- and post-processing. The majority of teams used existing medical imaging deep learning frameworks. The main differences between the submissions were the fine tuning done during training, and the specific pre- and post-processing steps performed. The challenge results showed that almost all submissions performed similarly. Four of the top five teams used ensemble learning methods. However, one team's algorithm performed significantly superior to the other submissions, and consisted of an asymmetrical U-Net network architecture. This paper provides a first of its kind benchmark for future automatic multi-tissue segmentation algorithms for the developing human brain in utero.


Assuntos
Processamento de Imagem Assistida por Computador , Substância Branca , Gravidez , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Encéfalo/diagnóstico por imagem , Cabeça , Feto/diagnóstico por imagem , Algoritmos , Imageamento por Ressonância Magnética/métodos
3.
Int J Comput Assist Radiol Surg ; 16(9): 1481-1492, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34185253

RESUMO

PURPOSE: Timely, accurate and reliable assessment of fetal brain development is essential to reduce short and long-term risks to fetus and mother. Fetal MRI is increasingly used for fetal brain assessment. Three key biometric linear measurements important for fetal brain evaluation are cerebral biparietal diameter (CBD), bone biparietal diameter (BBD), and trans-cerebellum diameter (TCD), obtained manually by expert radiologists on reference slices, which is time consuming and prone to human error. The aim of this study was to develop a fully automatic method computing the CBD, BBD and TCD measurements from fetal brain MRI. METHODS: The input is fetal brain MRI volumes which may include the fetal body and the mother's abdomen. The outputs are the measurement values and reference slices on which the measurements were computed. The method, which follows the manual measurements principle, consists of five stages: (1) computation of a region of interest that includes the fetal brain with an anisotropic 3D U-Net classifier; (2) reference slice selection with a convolutional neural network; (3) slice-wise fetal brain structures segmentation with a multi-class U-Net classifier; (4) computation of the fetal brain midsagittal line and fetal brain orientation, and; (5) computation of the measurements. RESULTS: Experimental results on 214 volumes for CBD, BBD and TCD measurements yielded a mean [Formula: see text] difference of 1.55 mm, 1.45 mm and 1.23 mm, respectively, and a Bland-Altman 95% confidence interval ([Formula: see text] of 3.92 mm, 3.98 mm and 2.25 mm, respectively. These results are similar to the manual inter-observer variability, and are consistent across gestational ages and brain conditions. CONCLUSIONS: The proposed automatic method for computing biometric linear measurements of the fetal brain from MR imaging achieves human-level performance. It has the potential of being a useful method for the assessment of fetal brain biometry in normal and pathological cases, and of improving routine clinical practice.


Assuntos
Encefalopatias , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Feto/diagnóstico por imagem , Humanos , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...